# **Power & Mobility (P&M)**

GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & Advanced planning briefing for industry

### Model-Based Optimization of Hydrogen Storage for Military Ground Vehicle Applications

Ben Paczkowski Andrew Wiegand

### Introduction



The Army has increasing interest in electrified vehicles:

- The Army Climate Strategy targets electrified vehicle platform fielding by 2035
- Electrification enables:
  - Silent watch
  - Silent mobility
  - Advanced sensor and weapon packages
  - Exportable power
  - Microgrids



https://www.trucks.com/2017/04/03/chevrolet-zh2-hydrogen-truck/

Fuel cells can fill gaps in current electrification technologies

- Fast fueling on par with current fueling times
- Extended range operations
- Utilize logistic fuels (direct fuel or fuel to hydrogen)

Hydrogen stored on military vehicles is a challenge

Lower volumetric density than liquid fuel

ROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUI Advanced planning briefing for industry

**Power & Mobility** 

(P&M

Vehicles were selected to cover a broad range of weight classes from around 10,000 kg to 50,000 kg both wheeled and tracked:

- M1280 Joint Light Tactical Vehicle (JLTV) •
- M1085 Long Wheelbase Medium Tactical Vehicle (LWB MTV) ٠
- M1075 Palletized Load System (PLS) •
- M113 Armored Personnel Carrier ٠
- Mobile Protected Firepower (MPF) Prototype •
- M88 Recovery Vehicle •



https://www.nationaldefensemagazine.org/articles/2022/1/25/oshkosh-defe

ehicles/pls/

### Scope: Hydrogen Storage

Power & Mobility (P&M)



A variety of technologies were investigated including:

- 350 and 700 bar compressed gaseous storage (state of art)
- Liquid hydrogen (LH<sub>2</sub>)
- Cryo-compressed hydrogen (CcH<sub>2</sub>)
- Aluminum hydride (alane)
- Magnesium nanoparticles encapsulated in reduced graphene oxide (rGO-Mg)
- Metal organic framework 5 (MOF-5)
- Methylcyclohexane (MCH)/toluene liquid organic hydrogen carrier (LOHC)



### Assumptions

Power & Mobility (P&M)



- 1 polarization curve used to define fuel cell performance for all vehicles
- Same active area per cell in each vehicle
- Cells connected as a stack to match current vehicle power
- Fuel cell and battery hybrid system
  - Battery capacity determined by the kinetic energy of 70 mph to 0 deceleration
- Hydrogen storage technologies at same operating temperature and pressure, where possible
- One dimensional vehicle model based on road load equation:

$$Load = f_r mg \cos\theta + \frac{1}{2}\rho_{air}c_d Av^2 + mg \sin\theta$$

- Charge sustaining battery control strategy
- All vehicles weight neutral after fuel cell conversion

OUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

Model

### Power & Mobility (P&M)







GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & Advanced planning briefing for industry

9/13/2022

### Submodels

- Kinetic models:
  - rGO-Mg: Johnson-Mehl-Avrami (JMA)
  - Alane: Avrami-Erofeyev
  - MOF-5: classic micropore diffusion
  - MCH: Langmuir-Hinshelwood-Hougen-Watson (LHHW)

Power & Mobility

(P&M

- Amesim Submodels:
  - Real gas flow
  - Constant volumetric liquid flow
- Shell and tube heat exchanger design equations

| Power & | Mobility |
|---------|----------|
|         | (P&M)    |



| Vehicle    | Weight    | Required Range | Frontal Area | Drag Coefficient | Rolling Resistance |           |         |
|------------|-----------|----------------|--------------|------------------|--------------------|-----------|---------|
| Designator | (approx.) |                |              |                  |                    |           |         |
| Units or   | kg        | mi             | m²           | Dimensionless    | Primary            | Secondary | Cross   |
| Condition  |           |                |              |                  |                    |           | Country |
|            |           |                |              |                  |                    |           |         |
| M1280      | 9,000     | 300            | 5.16         | 0.7              | 0.008              | 0.016     | 0.071   |
| M1085      | 21,000    | 300            | 5.11         | 0.75             | 0.009              | 0.016     | 0.071   |
| M1075      | 40,500    | 300            | 4.46         | 0.95             | 0.009              | 0.016     | 0.071   |
| M113       | 15,000    | 300            | 6.28         | 0.68             | 0.045              | 0.055     | 0.076   |
| MPF        | 20,500    | 300            | 7.53         | 0.66             | 0.038              | 0.057     | 0.076   |
| M88A1      | 51,000    | 280            | 9.71         | 0.95             | 0.06               | 0.06      | 0.06    |

GROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM & Advanced planning briefing for industry

Power & Mobility (P&M)



| Vehicle | Speed<br>(mph) | Economy<br>(mi/kg) | Required<br>Range (mi) | Required H <sub>2</sub><br>Storage (kg) |
|---------|----------------|--------------------|------------------------|-----------------------------------------|
| M1280   | 35             | 23.2               | 300                    | 12.9                                    |
| M1085   | 35             | 10.6               | 300                    | 28.4                                    |
| M1075   | 35             | 6.7                | 300                    | 44.7                                    |
| M113    | 25             | 3.8                | 300                    | 78                                      |
| MPF     | 25             | 3.3                | 300                    | 91                                      |
| M88A1   | 20             | 0.88               | 280                    | 318.9                                   |

#### Conditions:

- 0% grade (flat)
- 10 mile primary road

OUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM Advanced planning briefing for industry

### **Simulation Results**

Power & Mobility (P&M)





#### MUNSON SIMULATION RESULTS

**CHURCHVILLE SIMULATION RESULTS** 



- Aggressive cross country
  - 15 mph target speed
  - Same braking and controls as Munson

- Primary road with one hill25 mph target speed
- 120 kW regen braking limit

JUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIU Invanced planning briefing for industry



9/13/2022



9/13/2022

### Hydrogen Flow from Materials

Power & Mobility (P&M)



Green meets or exceeds flow rate requirements, red does not. Wheeled vehicles above, tracked vehicles below.

ROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUI Advanced planning briefing for industry

## LOHC Requirements

**Power & Mobility** 

(P&M





- Accounting for catalyst mass, the MCH system has a higher gravimetric density than 700 bar compressed hydrogen
- However, the margin could be reduced with the addition of storage tanks and hydrogen purification systems

### Heat Transfer Considerations

Power & Mobility (P&M)





- Heat exchangers can handle the required flow rates for all vehicles with minimal pressure drop
- CcH2 requires slightly more heat transfer area due to the 40 K temperature difference
- This difference reduces the heat duty for CcH2

ROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM

### Conclusions

9/13/2022

Power & Mobility (P&M)



- Fuel cell systems can provide adequate power for all investigated systems
- Several technologies can outperform the state of the art
  - Cryo-compressed can store 160% more hydrogen per unit weight,
    300% more per unit volume
  - MOF-5 has incredible kinetics and could offer a simplified design
  - Alane has impressive gravimetric and volumetric capacities
- rGO-Mg and MCH present challenges
  - Both require at least 5% of the total energy stored to be utilized
  - rGO-Mg may not meet filling time needs
  - Hydrogen from MCH may need purification
  - MCH requires two liquids to be stored on vehicle and is complex

ROUND VEHICLE SYSTEMS ENGINEERING & TECHNOLOGY SYMPOSIUM A ADVANCED PLANNING BRIEFING FOR INDUSTRY